China Standard Spiral Slit Encoder Flexible Coupling Set Screw Bellow Coupling Manufacture Aluminum Couplings for Motor Electric Machinery motor coupling

Product Description

Product Description

SFC/SFCS  series coupling set screw, flexible coupling

Technical Parameters

value

 

   Model   SFC SFCS

NO.

SFC16~SFC63

SFCS16~SFCS63

Rated torque (N.M)

0.3~20

0.5~35

Max. torque (N.M)

  0.6~40 1~70

Max. rotational (rpm)

6100~24000

6100~24000

Moment of inertia (kg.m2)

3.3*10-7~3.2*10-4

8.4*10-7~8.4*10-4

Staic torional (N.M/ rad)

47~850

85~1800

Allowable eccentricity error(mm)

0.1~0.2

0.1~0.2
   Allowable angular error(0)   2 2
   Allowable shaft end-play ( mm )   ±0.4~±0.5 ±0.3~±0.5
   Material   auminum staniness

Company Profile

 

      HangZhou liHangZhou Machinery Co., Ltd. is a ZheJiang funded enterprise integrating design, R & D, professional production and sales of automatic machinery products and providing technical consultation and after-sales service. Since its establishment for more than 10 years, the company has been committed to the R & D and production of automatic machinery, and provides OEM production for major brands in the industry. It has a professional R & D team, strong technical force and perfect sales scheme, has accumulated a lot of technology and experience, and has developed a series of products that are more suitable for domestic users in China. Its overall technology is higher than that of similar products in the industry. Xihu (West Lake) Dis.d by the production of high-precision products and the business philosophy of “professionalism, integrity and service”, the company is committed to building a brand in China’s automation machinery industry.

FAQ

1) Customize prodcuts are available ? 

     Yes, Customize products are available. We could design and produce products according to your requirements or darwings. You just need to tell us your detailed requirements and our technicists will design and provide materials for your confimation. If all is ok, the production will be arranged. 

2)  What’s your payment terms? 
    For small order, considering the value is not large, the payment terms are 100% T/T in advance. 
    For large order, we could negotiate. 

3) how about the packaging and shipment? 
    Packaging : in box (wooden case). 
    Shipment : according to customer’s instruction. 

4) How about the lead time ? 
   For common model, the lead time is about 15 workdays; 
   For customize model, the lead time is longer, about 30 workdays.

5) How about the quarantee period ? 
    In generall, the quarantee period – 1 year for assembly unit from the date of sale .  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

motor coupling

Can Motor Couplings Compensate for Angular, Parallel, and Axial Misalignments?

Yes, motor couplings are designed to compensate for different types of misalignments, including angular, parallel, and axial misalignments. The ability to accommodate misalignment is a key feature of motor couplings, and various coupling types offer different levels of misalignment compensation:

1. Angular Misalignment:

Angular misalignment occurs when the motor and driven equipment shafts are not perfectly aligned in the same plane, causing an angle between them. Motor couplings, especially flexible couplings, can effectively compensate for angular misalignment. Flexible couplings like jaw couplings, beam couplings, and oldham couplings can tolerate angular misalignment to a certain extent while transmitting torque smoothly.

2. Parallel Misalignment:

Parallel misalignment happens when the motor and driven equipment shafts are not perfectly aligned along their axis, leading to offset displacement. Flexible couplings, such as bellows couplings and disc couplings, are well-suited to accommodate parallel misalignment. These couplings can maintain good misalignment tolerance while providing high torsional stiffness for efficient torque transmission.

3. Axial Misalignment:

Axial misalignment occurs when there is a linear offset between the motor and driven equipment shafts along the axis. For some flexible couplings, a limited amount of axial misalignment can be tolerated. However, specific coupling types, such as self-aligning ball bearing couplings, are more suitable for handling higher levels of axial misalignment.

It is important to note that while motor couplings can compensate for misalignment, they have their limits. Excessive misalignment can lead to premature wear, reduced efficiency, and potential coupling failure. Proper alignment during installation and regular maintenance are essential to ensure the coupling’s misalignment compensation remains effective over time.

When selecting a motor coupling, consider the type and amount of misalignment expected in your application. Choose a coupling that offers the required level of misalignment compensation, ensuring smooth power transmission and extending the lifespan of the coupling and connected components.

“`motor coupling

Explaining the Concept of Backlash and Its Impact on Motor Coupling Performance

Backlash is a critical factor in motor coupling performance and refers to the clearance or play between mating components within the coupling. In the context of motor couplings, it specifically relates to the amount of free movement or angular displacement that occurs when there is a change in direction of the driven shaft without a corresponding immediate change in the driving shaft.

Backlash in motor couplings can occur due to several factors:

  • Manufacturing Tolerances: Variations in the manufacturing process can lead to slight clearances between coupling components, introducing backlash.
  • Wear and Tear: Over time, the coupling components may experience wear, leading to increased clearance and backlash.
  • Misalignment: Improper alignment between the motor and driven equipment shafts can cause additional play in the coupling, resulting in increased backlash.

The impact of backlash on motor coupling performance includes the following:

1. Reduced Accuracy:

Backlash can lead to inaccuracies in motion transmission. When the direction of rotation changes, the free play in the coupling must be taken up before torque can be effectively transmitted. This delay in motion transfer can cause positioning errors and reduced accuracy in applications requiring precise movements.

2. Vibration and Noise:

Excessive backlash can cause vibration and noise during operation. The sudden engagement of the coupling components after a change in direction can create shocks and vibrations that may affect the overall system performance and lead to premature wear of coupling components.

3. Reduced Efficiency:

Backlash results in power loss, especially in applications with frequent changes in direction. The energy required to take up the clearance in the coupling reduces the overall efficiency of power transmission.

4. Wear and Fatigue:

Repeated impacts due to backlash can accelerate wear and fatigue of coupling components, leading to a shorter lifespan and potential coupling failure.

5. Safety Concerns:

In certain applications, particularly those involving heavy machinery or high-speed operations, excessive backlash can pose safety risks. The lack of immediate response to directional changes can affect the control and stability of the equipment.

To mitigate the effects of backlash, it is essential to select motor couplings with low or controlled backlash and to maintain proper alignment during installation. Regular inspection and maintenance can help identify and address any increasing backlash, ensuring the motor coupling operates with optimum performance and reliability.

“`motor coupling

What is a Motor Coupling and its Role in Connecting Motors to Driven Equipment?

A motor coupling is a mechanical device used to connect an electric motor to driven equipment, such as pumps, compressors, conveyors, and other machinery. Its primary role is to transmit torque from the motor to the driven equipment, allowing the motor to drive and control the operation of the connected machinery.

Function of a Motor Coupling:

The motor coupling serves several essential functions in the overall mechanical system:

1. Torque Transmission:

The main function of a motor coupling is to transfer torque from the motor shaft to the shaft of the driven equipment. As the motor rotates, it generates torque that needs to be efficiently transmitted to the machinery to produce the desired motion or work.

2. Misalignment Compensation:

Motor couplings can accommodate a certain degree of misalignment between the motor and driven equipment shafts. Misalignment may occur due to manufacturing tolerances, installation errors, or operational conditions. The coupling’s flexibility helps reduce stress on the motor and driven equipment’s bearings and prolongs their life.

3. Vibration Damping:

Some motor couplings, particularly those with flexible elements like elastomeric or rubber components, can dampen vibrations generated during motor operation. Vibration damping improves the overall system’s performance and reduces wear on connected components.

4. Overload Protection:

Motor couplings can act as a safety feature by providing overload protection to the connected machinery. In certain coupling designs, a shear pin or a similar mechanism may break under excessive load or torque, preventing damage to the motor or driven equipment.

5. Noise Reduction:

Well-designed motor couplings can help reduce noise and resonance in the system. By absorbing vibrations and minimizing backlash, the coupling contributes to quieter and smoother operation.

6. Efficiency and Reliability:

A properly selected and installed motor coupling improves the overall efficiency and reliability of the mechanical system. It ensures that the motor’s power is effectively transmitted to the driven equipment, resulting in smoother operation and reduced energy losses.

Motor couplings come in various types, including rigid couplings, flexible couplings, gear couplings, and more, each designed to suit specific applications and operating conditions. Selecting the appropriate coupling type is crucial to ensure optimal performance, prolonged equipment life, and enhanced safety in motor-driven systems.

“`
China Standard Spiral Slit Encoder Flexible Coupling Set Screw Bellow Coupling Manufacture Aluminum Couplings for Motor Electric Machinery   motor couplingChina Standard Spiral Slit Encoder Flexible Coupling Set Screw Bellow Coupling Manufacture Aluminum Couplings for Motor Electric Machinery   motor coupling
editor by CX 2024-04-10

motor shaft coupling

As one of leading motor shaft coupling manufacturers, suppliers and exporters of products, We offer motor shaft coupling and many other products.

Please contact us for details.

Mail:[email protected]

Manufacturer supplier exporter of motor shaft coupling

Recent Posts